

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE								
QUALIFICATION CODE: 07BOSC	LEVEL: 5							
COURSE CODE: GNC501S	COURSE NAME: GENERAL CHEMISTRY 1A							
SESSION: JUNE 2023	PAPER: THEORY							
DURATION: 3 HOURS	MARKS: 100							

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER								
EXAMINER(S)	MRS. LEONORITHA R. NAOMAS							
MODERATOR:	DR. MARIUS MUTORWA							

INSTRUCTIONS									
1.	Answer ALL the questions.								
2.	Write clearly and neatly.								
3.	Number the answers clearly								
4.	All written work must be done in blue or black ink and sketches can								
	be done in pencil								
5.	No books, notes and other additional aids are allowed								

PERMISSABLE MATERIALS

Non-programmable calculators

ATTACHMENTS

- 1. List of useful constants
- 2. Periodic Table

THIS QUESTION PAPER CONSISTS OF 9 PAGES

(Including this front page, list of constants and periodic table)

QUESTION 1: Multiple Choice Questions

[60]

- There are 20 multiple choice questions in this section. Each question carries
 3 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.
- 1. Which of the following pairs does not show an acid and its conjugate base?
- A. HNO₃ and NO₃-
- B. H₂SO₄ and HSO₄⁻
- C. H₂SO₄ and SO₄²⁻
- D. HSO₄ and SO₄2-
- 2. A sample of helium gas occupies 2.65 L at 1.20 atm. What pressure would this sample of gas exert in a 1.50-L container at the same temperature?
- A. 3.31 atm
- B. 1.20 atm
- C. 2.12 atm
- D. 0.679 atm
- 3. If the temperature of an ideal gas is raised from 100°C to 200°C, while the pressure remains constant, the volume:
- A. remains the same
- B. doubles
- C. goes to 1/2 the original volume
- D. none of these
- 4. Which conditions of P and T are most ideal for a gas?
- A. low P, high T
- B. high P, low T
- C. high P, high T
- D. depends on the gas
- 5. Calculate the number of atoms in 54.0 g of aluminum.
- A. 1.21 x 10^24 atoms Al
- B. 2.11 x 10^21 atoms Al
- C. 0.73 x 10²⁴ atoms Al
- D. 1.94 x 10²⁴ atoms Al

6. The compound given below is called _____.

O CH₃CH₂CH₂CH₂C-O-CH₂CH₃

- A. butyl acetate
- B. ethyl pentanoate
- C. propyl pentanoate
- D. ethyl butanoate
- 7. Which is NOT a physical property of alcohols or phenols?
- A. Phenols are generally only slightly soluble in water.
- B. The solubilities of normal primary alcohols in water decrease with increasing molecular weight.
- C. The hydroxyl group of an alcohol is nonpolar.
- D. Due to hydrogen bonding, boiling points of alcohols are much higher than those of corresponding alkanes.
- 8. A compound with a composition of 87.5 % N and 12.5 % H was recently discovered. What is the empirical formula for this compound?
- A. NH₂
- B. N₂H₃
- C. NH
- D. N₂H₂
- 9. The electronic configuration of the element whose atomic number is 26 is:
- A. 1s2 2s 2p6 3s2 3p6 4s0 3d8
- B. 1s2 2s2 2p6 3s2 3p6 3d6 4s2
- C. 1s2 2s2 2p6 3s2 3p6 4s2 3d6
- D. 1s2 2s2 2p6 3s2 3p6 4s2 3d4 4p2
- 10. Consider a 3dxz orbital. Which of the following statements is incorrect?
- A. The xz plane is a nodal surface.
- B. The xz plane divides the electron probability distribution into two identical mirror-image
- C. The xy plane divides the electron probability distribution into two identical mirror-image halves.
- D. The yz plane divides the electron probability distribution into two identical mirror-image halves.

11. Which of the following has the largest radius? A. F B. N C. C D. O 12. What is the mass of one mole of acetylsalicylic acid (aspirin), C₉H₈O₄? A. 29 g B. 196 g C. 180 g D. none of the above 13. Which of the following combinations of names and formulas is incorrect? A. H₃ PO₄ phosphoric acid B. HNO₃ nitric acid C. NaHCO₃ sodium carbonate D. H₂CO₃ carbonic acid 14. What is the name of Nal? A. sodium iodide B. sodium(I) iodide C. sodium monoiodide D. sodious iodide 15. The freezing point of pure camphor is 178.4 °C, and its molal freezing-point constant, Kf is 40.0 °C/m. Find the freezing point of a solution containing 3.00 g of a compound of molar mass 125 g/mol in 45.0 g of camphor. A. 174.1 °C B. 157.1 °C C. 135.2 °C D. 140.4 °C 16. Which of the following is a correct description of the natural direction of a Brønsted-Lowry acid-base reaction? A. weaker acid + weaker base → stronger acid + stronger base B. weaker acid + stronger base → stronger acid + weaker base

C. stronger acid + weaker base → weaker acid + stronger base
 D. stronger acid + stronger base → weaker acid + weaker base

- 17. A molecule with the formula C₃H₈ is a(n):
- A. hexane
- B. propane
- C. decane
- D. butane
- 18. The general formula for noncyclic alkenes is:
- A. C_nH_{2n}
- B. C_nH_n
- C. C_nH_{2n+2}
- D. C_nH_{2n-2}
- 19. Standard conditions (STP) are:
- A. 0°C and 2 atm
- B. 32°F and 76 torr
- C. 273 K and 760 mmHg
- D. 4°C and 7.6 mmHg
- 20. An object has a volume of 0.090 m³. Its volume given in cm³ is
- A. 0.90
- B. 90 000
- C. 9000
- D. 900

SECTION B: [40]

There are FOUR questions in this section. Answer all questions. Show clearly, where necessary, how you arrive at the answer as all working will carry marks.

Question 1 [15]

1.1 A particular sample of vinegar has a pH of 2.90. If acetic acid is the only acid that vinegar contains $Ka = 1.8 \times 10^{-5}$), calculate the concentration of acetic acid in the vinegar. (5)

1.2 A reaction requires a 500 mL solution with a pH of 2.5. What would be the mass of H_2SO_4 required to make up such solution? (5)

1.3 A 0.1044-g sample of an unknown monoprotic acid requires 22.10 mL of 0.0500 M NaOH to reach the end point. What is the molecular weight of the unknown? (5)

Question 2 [7]

2.1 Given the equation

 $2KCIO_3(s) \rightarrow 2KCI(s) + 3O_2(g)$

A 3.00-g sample of KClO3 is decomposed and the oxygen at 24.0°C and 0.982 atm is collected. What volume of oxygen gas will be collected assuming 100% yield? (4)

2.2 A balloon has a volume of 1.20 L at 24.0°C. The balloon is heated to 48.0°C. Calculate the new volume of the balloon. (3)

Question 3 [9]

An aqueous solution is prepared by diluting 3.30 mL acetone (d = 0.789 g/mL) with water to a final volume of 75.0 mL. The density of the solution is 0.993 g/mL. What is the molarity, molality and mole fraction of acetone in this solution?

Give the IUPAC names for the following compounds:

4.1 Identify the class of the following compounds. For any alkanes, alkenes, alkynes,aromatic compounds, carboxylic acids or alcohols, provide the IUPAC name of the molecule.(6)

(i) OH

(ii) NH₂

(iii) OH

4.2 Draw the structural formulas for the following compounds:

(3)

- a) 1-pentene
- b) 4-methylhexanoic acid
- c) 2-methyl-3-heptyne

THE END

GOODLUCK

USEFUL CONSTANTS:

Gas constant, R = $8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 0.083145 \text{ dm}^3 \cdot \text{bar} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 0.08206 \text{ L atm mol}^{-1} \cdot \text{K}^{-1}$ $1 \text{ Pa} \cdot \text{m}^3 = 1 \text{ kPa.L} = 1 \text{ N} \cdot \text{m} = 1 \text{ J}$ 1 atm = 101 325 Pa = 760 mmHg = 760 torrAvogadro's Number, N_A = $6.022 \times 10^{23} \text{ mol}^{-1}$ Planck's constant, h = $6.626 \times 10^{-34} \text{ Js}$ Speed of light, c = $2.998 \times 10^8 \text{ ms}^{-1}$

PERIODIC TABLE OF THE ELEMENTS

1																	18
1																	2
H 1.00794	2											13	14	15	16	17	He 4.00260
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.9898		3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co.	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.908	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		Uuo
(223)	226.025	(260)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	(272)	(269)						

Lanthanides: 57 58 59 60 61 62 63 64 65 66 67 68 69 70
 Sm
 Eu
 Gd
 Tb
 Dy
 Ho
 Er
 Tm
 Yb

 150.36
 151.96
 157.25
 158.925
 162.50
 161.930
 167.26
 166.934
 173.04
 Yb Ce Nd Pm 138.906 140.12 140.908 144.24 (145)

Actinides:

89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
227.028	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)